
1

College of Engineering

Senior Design Project Report

VOCODER - Voice Supported Programming

A project submitted in partial fulfillment of the requirements for the degree of

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

(Software Engineering Track)

By

Binh An Pham (1003770)

M Rachel Van Pelt (726488)

Steven Tran (1013838)

Supervised by

Vinitha H Subburaj

Spring 2021

2

Table of Contents

1. List of Figures……………………………………..……………………....………...…………….3

2. List of Tables

3. Acknowledgment…………….……..………………..…………………...…….……..…………..4

4. Abstract

5. Chapters

5.1 Introduction…….…………..…..………………..……...…………...…….……..…………..4

5.2 Background

5.3 Project Proposal…………………..………………..………………………….….…….…….7

5.4 Project Plan…………………..………………..………………………….….……………….8

5.5 Feasibility Analysis………………..…………………..……….……………………….…….9

5.5.1 Technical - Hardware

5.5.2 Technical - Software

5.5.3 Scheduling

5.5.4 Financial

5.5.5 Operational

5.5.6 Social and Ethical Considerations

5.6 Software Requirements Specifications (SRS)….......……….……………………….…….11

5.6.1 Overall description

5.6.2 Specific Requirements

5.7 Software Design (SDD)..37

5.7.1 Technologies Used

5.7.2 UML Design Diagrams

5.7.3 Software Architecture

5.7.4 Data Flow Diagram

5.7.5 User Interface Design

5.7.6 Data Model

5.7.7 Design Constraints

5.8 Implementation………………………………………………..…………………………....48

5.8.1 Presentation

5.8.2 Core Tech Stacks

5.8.3 Project Repository

5.8.4 Programming Languages/Libraries

5.8.5 Code Snippets

5.8.6 Pseudocode/Algorithm

5.8.7 Code Metrics

5.8.8 Voice Training

5.8.9 Testing

6. Results………………………………………………………………..………………………….58

7. Summary and Future Work……………………………………..……………………………..60

8. References…………………………………………………………..…………………………...61

9. Contribution Table and Teamwork……………………………..………..……………………62

10. Appendix A,B,C,D……………………...…………………………..…………...……….…..62-71

3

1. List of Figures

● 5.4.1 SDLC model

● 5.4.2 Project Plan

● 5.6.2.1 Use Case Diagram

● 5.7.2.1 Class Diagram

● 5.7.2.2 Sequence Diagram

● 5.7.3.1 Architecture Diagram

● 5.7.4 Data Flow Diagram

● 5.7.5 User Interface Design

● 5.7.6 Data Model

● 5.8.5 Code Snippets

● 5.8.7.1 application.py Metrics

● 5.8.7.2 voice_recognition.py Metrics

● 5.8.7.3 compiler.py Metrics

● 6.1 Results

2. List of Tables

● 5.6.2 Specific Requirements

○ 5.6.2.1.1 Use Case #1, Create New Variable

○ 5.6.2.1.2 Use Case #2, Assign Old Variable

○ 5.6.2.1.3 Use Case #3, Return Statement

○ 5.6.2.1.4 Use Case #4, Create For Loop

○ 5.6.2.1.5 Use Case #5, Create While Loop

○ 5.6.2.1.6 Use Case #6, Create If Statement

○ 5.6.2.1.7 Use Case #7, Create Else-If Statement

○ 5.6.2.1.8 Use Case #8, Create Else Statement

○ 5.6.2.1.9 Use Case #9, Create Array

○ 5.6.2.1.10 Use Case #10, Move Cursor

○ 5.6.2.1.11 Use Case #11, Cut Text

○ 5.6.2.1.12 Use Case #12, Undo Command

○ 5.6.2.1.13 Use Case #13, ReDo Command

○ 5.6.2.1.14 Use Case #14, Select Word

○ 5.6.2.1.15 Use Case #15, Select Line

○ 5.6.2.1.16 Use Case #16, Select Block

○ 5.6.2.1.17 Use Case #17, Copy Text

○ 5.6.2.1.18 Use Case #18, Paste Text

○ 5.6.2.1.19 Use Case #19, Print Statement

○ 5.6.2.1.20 Use Case #20, Print Variable

○ 5.6.2.1.21 Use Case #21, Create Function

○ 5.6.3.1.22 Use Case #22, Indent Cursor

○ 5.6.3.1.23 Use Case #23, Insert Characters

● 5.8.9.2.5 Acceptance Test Procedure

● 9 Contribution Table

4

3. Acknowledgment

Dr. Vinitha H Subburaj

Carnegie Mellon University

4. Abstract

In a world where software developers are required to type at the minimum 8 hours a day,

tendonitis and carpal tunnel have become more common than ever. In an effort to battle this negative

trend, our team of three proposed a solution to provide support for on-device and off-line programming

using voice recognition technology. Studies and experiments done on this matter have shown that

reducing the use of keyboards in combination with the usage of voice commands have either boosted the

productivity of programmers or introduced programming to an even larger audience. This paper discusses

the details needed to understand this emerging problem, presents the current state of the available

solutions, proposes our solution to the problem, introduces the details on the process of developing the

solution, and presents what more can be done in the future to improve the proposed solution.

5. Chapters

5.1 Introduction

 In this project, our team will propose a solution to support Programming by Voice in an effort to

battle the growing trend of programmers inflicted by carpal tunnel syndrome and tendonitis. The solution

is a text editor called VOCODER and developed in Python using the tkinter library. The solution also

supports on-device and offline voice recognition using the open source CMU Sphinx library. This paper

will discuss the important aspects of the development process.

5.2 Background (Literature Review)

 5.2.1 HyperCode: Voice aided programming

HyperCode is a voice-based programming framework that utilizes many speech technologies,

including Dragon NaturallySpeaking (DNS), Dragonfly, and Natlink, to help programmers with Upper

Limb Disorders (ULD) program and navigate inside IntelliJ IDEA, a commercial Java IDE. HyperCode

was developed to achieve three goals: “[m]ap Java keywords and common code snippets with voice

commands”, “[c]ontrolling IntelliJ IDEA interface using voice commands”, and “[r]educing the overall

time needed for writing code” [5].

HyperCode’s strengths lie in its functionalities inside of IntelliJ IDEA, up to the extent of

replacing the keyboard entirely. Another strength of HyperCode is its efficiency when used in

combination with keyboard and mouse, up 19 seconds faster in a simple creation process of a Java object

compared to just using keyboard and mouse.

However, HyperCode’s accuracy and time measurements methodology were never mentioned.

Another disadvantage of HyperCode is its use of DNS which is based on Microsoft Speech API, making

it unusable without an internet connection, not to mention data collection policy is also up to Microsoft to

decide. In comparison to an on-device model, this framework is significantly less secure.

5

This framework’s target users are very similar to ours being programmers with disorders caused

by lengthy typing sessions. However, HyperVoice was designed to work specifically with IntelliJ IDEA

and Java rather than Python in our case.

 5.2.2 VoiceGrip: A Tool for Programming-by-Voice

VoiceGrip is a programming-by-voice tool that addresses a wide range of problems in other

programming-by-voice systems at the time. One of which is how native was never meant to be spoken,

making Speech Recognition (SR) systems at the time awkward to use. The proposed tool uses a unique

technique of translating spoken pseudo-syntax into native code in the appropriate programming language,

acting as a support system to the available SR systems.

 The tool’s biggest advantage is its capability of translating pseudo-syntax into native code

making the interaction between the programmer and the editor more natural. The algorithm for this

process is also clearly presented making it easy to replicate. The testing methodology and results are

explained at length, giving us insight into the testing process. At the time of writing the paper, VoiceGrip

was supported by multiple editors and commercial SR systems.

The system was initially developed back in 1998, so it is no longer supported by the developer.

Furthermore, VoiceGrip is only a supporting tool that handles the translation of pseudo-syntax into native

code, not a standalone SR system. The error rate of the translation algorithm is also higher in comparison

to more modern systems.

VoiceGrip is a unique approach to the programming-by-voice problem, providing a supporting

tool to the existing systems. This approach is different from our approach of trying to develop a

standalone SR system, but it gives us an idea of what problems we should address. It also gives us a

detailed test process that is highly applicable to our system [6].

 5.2.3 Web based programming tool with speech recognition for visually impaired users

This research project “DICENS” addresses a unique programmers body, visually impared

programmers, by creating a speech responsive, lightweight and web based programming tool. “DICENS”

can also be used for new users trying to learn programming in a short period of time. This research project

presents a gap in the field, where GUI programming tools are far more advanced than current iterations of

voice programming tools.

 DICENS system is unique in the way that it interacts with the users, the system takes in voice

commands, feeds them through a semantic analysis engine, a code play supervision engine, and response

back to the users in terms of Braille codes. This process helps eliminate the needs for the use of keyboard

and mouse, hence incentivize the process of learning to program for visually impaired users. Another

advantage of the system is its portability, being a web based application, the system reduces the hassle of

setting it up in other environments.

 This system utilizes Web Speech API (by Mozzila) to convert users voice input into text format

so this process is not as secure as utilizing an on device, offline Speech Recognition engine. The results

and testing methodology shown in this research project is not very compelling, 85% accuracy with around

50 words tested, the system also fails to give any positive results in a noisy environment. The response

system in Braille codes is unique but limiting in many ways, and the computer-generated voice feedback

is mentioned but never explained.

6

 DICENS targets a different user base than our systems, being visually impaired users. The

methodology for developing is also different than ours, waterfall methodology compared to prototyping

methodology. This system gives us insights on how to design a responsive, user-friendly Speech

Recognition system [7].

 5.2.4 Designing For The Future With Voice Prototypes

This article addresses people's expectations for voice programming and gives insight on what a

programmer should do when developing a system that uses voice programming. The article speculates

that the future of software development will involve speech input in addition to the traditional forms of

program input. It describes the design thought process including: research about the user, defining the

necessary capabilities of the product, creating the user experience and determining the desired user

perception of the product. It also addresses testing of the product and fine tuning for final release.

 This article has some really good insight into some of the key points we are trying to address with

our project, such as user interactions and finding ways to improve on the user experience. It has several

good lists on what to be keeping in mind when developing our project. It is a good reference for where the

technology is headed and what to prepare for when developing a technology that involves speech input.

 This article is generalized for all types of voice input projects and does not really dive into any

particular projects of reference other than the option of working with Adobe XD. In our case we are

trying to avoid working with any licensed products such as Amazon or Google related apps, so this part of

the article will not be of help to us.

 Our project's goal is to help users eliminate keyboard input and rely on voice input instead. This

article has helpful tips on how to better understand this user and design the project around the user’s

expectations and intent of use. We are also using prototyping in our methodology and this article has

points to help with this [8].

 5.2.5 Programming by voice, VocalProgramming

This document begins by addressing the need for voice programming by detailing the severity of

carpal tunnel syndrome. It then goes into the current (as of January 2000 when the article was published)

status of voice technology before describing their ideas of how to improve and design their own project.

They speculate about the potential of their project and create a method for testing the effectiveness of

their project.

 The strengths of this report is the summary of technology studies that they had discovered up to

that point and it gives good insight on the capabilities of voice recognition software. It does a good job

explaining the motivation behind spending time on developing a system that can write programs using

voice input. They address the concerns of what was limiting their ability to develop an ideal system

including grammar used by the intended customer and the complexities involved in programming like

nesting.

 A drawback of this article is that it is quite old, especially since we are discussing voice driven

technology that is just recently becoming a focus of potential in user interactions. Their approach involves

purchasing Dragon NaturallySpeaking Professional Version and we are trying to avoid the purchase of

commercial products or requiring the user to purchase a commercial product in order to use our system.

 Our project shares the same motivation of their project in that we are trying to create a solution

for users that suffer from carpal tunnel syndrome. We are in the process of researching existing projects

much like they did in order to determine where improvements can be made on the existing solutions.

7

They have outlined a solution to address navigating to different structures within a program being edited

or created which will be helpful in our design phase. They mention the applications of data entry which

we may be able to use in conjunction with our idea of using a menu driven interface along with the

traditional methods of voice input [9].

5.3 Project Proposal

Carpal tunnel syndrome (CTS) and tendonitis are conditions that all programmers are susceptible

to if they don’t take the necessary precautions against it. This problem could be alleviated by having the

programmer being able to code simple statements without use of their hands, reducing the risk of

developing CTS.

 There are existing solutions to this problem that build on Dragonfly, a speech recognition framework

for Python. [2] “Talon is currently the most promising project for hands-free coding. Lots of short words

map to letters and syntax, which provides good efficiency, but can be hard to learn.” [2] We believe this is

a common technique that could be improved upon. It is important to not burden a user with learning

another language. We should make the tool intuitive to use and in this case be more natural, mimicking

human communication and replicate “the exact phrases that a target user uses when they speak with other

people.” [3]

 The scope of this project will be “a system that supports all the functionalities. It will tackle a

Python subset consisting of function and variable declarations and expressions (as many as possible). In

terms of statements, only return, assignment, and declaration statements are required, although having for

loops and if statements is useful. Dealing with lists is also not required. Although navigation is also very

important, it is not required for this project. The reasoning is that problems such as repetitive strain

injuries are more intensified by the act of writing code than by navigating through it using a keyboard or

mouse.” (1) It will take roughly 2 to 3 months to implement the solution.

Proposed methodology is to study current applications and trends in voice guided programming

and find a way to improve and contribute to the existing community currently working on a solution.

Analyzing guides on Human-Machine Grammar rules [4] will help us create a more user-friendly solution

for the intended customer and hopefully an expanded audience using the technology. “It’s evident that

voice will be a natural way for the new generation of users to interact with technology” [3]. With the

growing popularity of voice assistants, we hope to find many open-source utilities that we can use the best

parts of and build on to meet the main purposes of this project.

8

5.4 Project Plan

 For our preferred SDLC model we are planning on using a hybrid of Prototyping and Agile.

For the agile part we have a heavy emphasis on involving the customer of our product since our

project involves helping them directly as the sole user of the product. The aspect of making small

incremental changes works well in conjunction with our idea of starting with minimal functionality and

building on that as the project progresses. Therefore, there is no need for extensive design upfront.

Making use of refactoring will be key in adding those changes to the overall project to keep the code

organized and readable as well as easier to modify. We will be more attentive to individuals and

interactions rather than processes and tools. Customer collaboration is a necessity in order to reach our

goal of improving on current products and the ease of usability.

 For the prototype part the desirable new solution is unknown (we have a sense of what is already

done but know there is room for improvement) therefore evolutionary prototyping makes sense with a

customer feedback loop. We want user needs met and to prevent overdoing it with unnecessary features.

 We decided to use a project plan template in excel so we can use a spreadsheet to track the

various functions we are working on, what has been finished/approved by the customer, when new

features are added or taken out, etc. We will use dates and time spent on each aspect to see if we are on

track to finish or to see if we are spending too much time on a feature. (completed template included in

Appendix D)

9

 The following tools enable us to keep up communication with our team members and also with

our faculty member. These tools enable us to maintain our artifacts effectively and complete all the tasks

on time proficiently.

Communication Tools: Discord, text message, email

 Document Management Tools: Google Drive/Docs

 SVC: Github

 Changes to artifacts: Github logs and Google Drive/Docs logs

5.5 Feasibility Analysis (version: 4390.9.1)

5.5.1 Technical feasibility - Hardware

 5.5.1.1 Things we will need:

 5.5.1.1.1 Computers for programming and testing.

 5.5.1.1.2 Microphone to be able to take voice input.

 5.5.1.2 Hardware requirements:

5.5.1.2.1 Reliable computers: To program and run the app, we will need computers

capable of running the various softwares for development

5.5.1.2.2 Accurate microphone: We need microphones that will take good quality input

from our voices to use for development and testing.

 5.5.1.3 Is the project feasible from a hardware perspective?

5.5.1.3.1 As long as the computer can handle running the application and a text editor at

the same time, it will be feasible. There is no risk since computers should be able to run

those easily.

5.5.2 Technical feasibility - Software

 5.5.2.1 Things we will need:

5.5.2.1.1 Access to an open-source voice recognition software

5.5.2.1.2 An environment to program the app

5.5.2.1.3 Once we have these ready, we will need to design and write the code for the

project.

 5.5.2.2 Software requirements:

5.5.2.2.1 To successfully develop this project, we will need basic knowledge of the

software tools that are to be used. These tools include:

5.5.2.2.1.1 Environment to write the code - any text editor/IDE will be fine to use

10

5.5.2.2.1.2 Voice recognition software - method to receive the data the software

gets from voice input

 5.5.2.3 Is the project feasible from a software perspective?

5.5.2.3.1 We will need to learn and use certain skills to write the code.

5.5.2.3.1.1 How to get the text output from voice input using the voice recognition

software

5.5.2.3.1.2 Creating a GUI for a text editor

5.5.2.3.1.3 Creating an algorithm to accurately follow user’s command

5.5.3 Scheduling feasibility

 5.5.3.1 Project must be completed by end of two semesters

5.5.3.1.1 We will need to finish all planning and design of project before end of first

semester

5.5.3.1.2 Using a hybrid methodology of Agile and Prototyping and a template to match

will help us break up the project into phases and appropriate deadlines

5.5.3.1.3 Using open-source software will save time and allow us to spend that saved

time on refining and improving existing voice programming models

5.5.3.1.4 Weekly progress reports will show our progress and upcoming tasks

5.5.4 Financial feasibility

 5.5.4.1 Costs of the project should be minimal

5.5.4.1.1 a microphone for voice input

5.5.4.1.2 open-source software is free; licensing would be the highest cost if the open-

source is not available

5.5.5 Operational feasibility

 5.5.5.1 Is the project feasible from an operational perspective?

5.5.5.1.1 This app will require users to be willing to learn a new set of commands using a

new medium to input those commands. If the way we implement these commands are not

intuitive and easy to learn, it will be hard to convince people to continue to use the

program and meet the overall goal of making it easier to code.

5.5.6 Social and Ethical Considerations

 5.5.6.1 Ethical factors

11

5.5.6.1.1 We will not be storing any of the voice input from the editing sessions, therefore

avoiding ethical use of the data

 5.5.6.1 Social factors

5.5.6.1.1 This project’s target audience are programmers that have trouble with typing on

their keyboard. We need to make sure to minimize the usage of the keyboard to appeal to

this demographic.

5.5.6.1.2 Continued operation would include adding requested and common commands

that would be useful to the users.

5.6 Software Requirements Specifications (SRS) (version 4390.10.1)

5.6.1 Overall Description

 5.6.1.1 Definitions, acronyms, and abbreviations

 5.6.1.1.1 user: The person, or persons, who operate or interact directly with the product [11]

 5.6.1.1.2 SRS: Software Requirements Specifications

 5.6.1.1.3 Natural Language Interface: (NLI) a user interface that allows people to interact

 using a human language, such as English, as opposed to a computer language, command line

 interface, or GUI [12]

 5.6.1.1.4 Menu Driven Interface: (MDI) an interface consisting of a series of screens which

 are navigated by choosing options from lists, i.e. menus. (“Menu” is not used here to refer to

 pull down menus, but to lists of options on the screen that lead to other screens.) [12]

 5.6.1.1.5 Graphical User Interface: (GUI) pronounced “GOOEY”. A user interface that

 presents information graphically, typically with draggable windows, buttons, and icons, as

 opposed to a textual user interface, where information is presented on a text-based screen

 and commands are all typed [12]

5.6.1.2 Product Perspective

The project will put greater emphasis on the use of a natural language interface and minimize

the use of a graphical user interface and command line interface. It should “work reasonably

well without the need for users to provide input character-by-character” [10]. It could make use

of menu driven interfaces in conjunction with the natural language interface. It could be

“implemented either as a standalone editor or as a plugin to existing IDEs” [10]. It should

“identify typical mistakes made by speech recognition systems when dealing with voice-based

input in the context of programming” [10]. We also want the user interactions to be intuitive

with the system and less of a burden on the user to learn a large vocabulary that is counter to a

normal programmer environment.

5.6.1.3 User Characteristics

The main user is characterized as being a software developer suffering from “repetitive strain

injuries such as carpal tunnel syndrome and tendonitis” [10]. “In addition, it can enable

individuals with upper-body motor impairments, e.g, due to spinal cord injuries or strokes, to

write code” [10]. The user is assumed to be a person with some software development

knowledge including typical programming terminology.

12

5.6.1.4 Constraints

“The only constraint is that no commercial tools or services, e.g., Google's speech recognition

service, must be required for the system to work.” [10]. The project will be designed to work

with Python as the user’s programming language. Machine learning may be necessary to

improve the quality of language recognition and make it “tolerant of imprecision and be able to

handle unforeseen cases. The downside is that constructing the dataset to employ such an

approach is non-trivial” [10].

5.6.1.5 Assumptions and Dependencies

A language recognition system is a large part of this project and depends on us acquiring a

usable product that already has a substantial base and would only need fine tuning on our part.

The success of this project could be hindered by a sub-par language interface that requires more

of our attention than initially allotted. If machine learning is used to enhance the language

interface, it also would need to be an available resource that only needs some minor

adjustments and not something that takes away from the overall goals of the project. Using the

language interface in conjunction with other interfaces could reduce its weight on the project as

a whole making it more manageable and feasible.

 5.6.2 Specific Requirements

 5.6.2.1 Use Cases

 Overall use case diagram for the system and provided below are case descriptions for all the

 use cases shown

13

5.6.2.1.1 Use Case #1

Use Case ID: CNV

Use Case Name: Create New Variable

Priority: High Trigger:

Date Created: 9/11/2020 Last Revision Date 10/6/2020

Actors: User

Description: System initializes a new variable using a provided name, value(s), and operator(s).

Preconditions: If user wishes to assign a new value to a variable, that variable must already exist
within scope

Postconditions: Variable name will be added to list of names in use

Normal Flow: 1. User calls the create new variable command

2. System determines the variable name from voice input

3. System determines the value(s) from voice input

4. System determines if any operators were in voice input

5. System checks to see if desired variable name is in use

6. System outputs the statement assigning the value to the variable

 Alternative Flow 6a. System confirms that the desired variable name is in use
7a. System alerts the user that the name is taken and to say a new name to use
8a. System gets new name from voice input
9a. System checks to see if new variable name is in use

Flow goes to either 6 or 6a

Exceptions:

14

5.6.2.1.2 Use Case #2

Use Case ID: AOV

Use Case Name: Assign Old Variable

Priority: High Trigger:

Date Created: 10/4/2020 Last Revision Date 10/6/2020

Actors: User

Description: System assigns a value to an already declared variable.

Postconditions: Value of variable is changed to new one

Normal Flow: 1. User calls the assign old variable command

2. System determines the variable name from voice input

3. System determines the value(s) from voice input

4. System determines if any operators were in voice input

5. System checks to see if desired variable name is in use

6. System outputs the statement assigning the value to the variable

 Alternative Flow 6a. System confirms that the desired variable has not been initialized

7a. System alerts the user that the variable does not exist and to say the name

again

8a. System gets name from voice input

9a. System checks to see if variable name is in use

Flow goes to either 6 or 6a

15

5.6.2.1.3 Use Case #3

Use Case ID: RS

Use Case Name: Return Statement

Priority: High

Date Created: 9/12/2020 Last Revision Date 10/6/2020

Actors: User

Description: System will output a return statement

Preconditions: If user wishes to return a variable, variable must already exist within scope

Postconditions:

Normal Flow: 1. User calls the return statement command

2. System determines the desired return value from input

3. System outputs the statement returning the value

 Alternative Flow 3a. System determines that a variable is to be returned

4a. System looks up the variable name and makes sure it is in the scope

and can be returned

5a. System outputs the statement returning the variable

5b. System alerts that it could not find variable in use or it is not in the

scope

6b. System prompts the user to say the variable name again

Flow goes to either 5a or 5b.

3c. System did not receive any value/variable to return

4c. System outputs the return command

16

5.6.2.1.4 Use Case #4

Use Case ID: CFL

Use Case Name: Create For Loop

Priority: Medium

Date Created: 9/13/2020 Last Revision Date 10/6/2020

Actors: User

Description: System will output a for loop using a specified looping variable and condition

Preconditions:

Postconditions: A for loop is created and the cursor is placed in the line after the for loop,

indented 4 spaces in.

Normal Flow: 1. User calls the for loop command with a looping variable and

condition

2. System gets looping variable from input

3. System checks if looping variable is already in use in scope

4. System gets looping condition from input

5. System outputs the for loop statement

6. System moves cursor to the next line and indents 4 spaces in

 Alternative Flow 4a. If variable is not already in scope, initializes a new variable with that

name with value 0

Goes to 5

17

5.6.2.1.5 Use Case #5

Use Case ID: CWL

Use Case Name: Create While Loop

Priority: Medium

Date Created: 10/4/2020 Last Revision Date

Actors: User

Description: System will output a while loop using a specified looping condition

Postconditions: A while loop is created and the cursor is placed in the line after the while

loop, indented 4 spaces in.

Normal Flow: 1. User calls the while loop command with a looping variable and

condition

2. System gets looping condition from input

3. System outputs the while loop statement

4. System moves the cursor to the next line and indents 4 spaces in

18

5.6.2.1.6 Use Case #6

Use Case ID: CIF

Use Case Name: Create If Statement

Priority: Medium

Date Created: 9/13/2020

Actors: User

Description: System will output an if statement

Preconditions:

Postconditions: If statement is created and the cursor is moved to the next line and indented 4

spaces to the right.

Normal Flow: 1. User calls the if statement command

2. System determines the condition from input

3. System outputs the if statement block

4. System moves the cursor to the next line and indents 4 spaces in

Alternative Flow 3b. If a variable is used in the condition, system checks if it is valid

4b. If variable is not valid to use, system prompts user to say condition

again

Flow goes to 2

19

5.6.2.1.7 Use Case #7

Use Case ID: CEIF

Use Case Name: Create Else-If Statement

Priority: Medium

Date Created: 10/4/2020

Actors: User

Description: System will output an else-if statement

Postconditions: Else-If statement is created and the cursor is moved to the next line and

indented 4 spaces in.

Normal Flow: 1. User calls the else-if statement command

2. System checks if there is an if statement above the cursor already

inside the scope

3. System determines the condition from input

4. System outputs the else-if statement block

5. System moves the cursor to the next line and indents 4 spaces in

Alternative Flow 3a. If there is no if statement, the system alerts the user of it and exits the

command.

3b. If a variable is used in the condition, system checks if it is valid

4b. If variable is not valid to use, system prompts user to say condition

again

Flow goes to 3

20

5.6.2.1.8 Use Case #8

Use Case ID: CEF

Use Case Name: Create Else Statement

Priority: Medium

Date Created: 10/4/2020

Actors: User

Description: System will output an else statement

Postconditions: Else statement is created and the cursor is moved to the next line and indented

4 spaces in.

Normal Flow: 1. User calls the else statement command

2. System checks if there is an if statement above the cursor already

inside the scope

3. System outputs the else statement block

4. System moves the cursor to the next line and indents 4 spaces in

Alternative Flow 3a. If there is no if statement, the system alerts the user of it and exits the

command.

21

5.6.2.1.9 Use Case #9

Use Case ID: CA

Use Case Name: Create Array

Priority: Medium

Date Created: 10/4/2020

Actors: User

Description: System will create an empty 1D array with a specified name

Preconditions: Desired name is not already in use

Postconditions: List name will be added to list of names being used

Normal Flow: 1. User calls the create array command

2. System gets array name from voice input

3. System outputs statement creating an empty 1D array with the

specified name

Alternative Flow: 3a. If array name is already taken, system prompts user to say another

name to use instead - Goes to 2

22

5.6.2.1.10 Use Case #10

Use Case ID: MC

Use Case Name: Move Cursor

Priority: Low

Date Created: 9/13/2020

Actors: User

Description: System will move cursor to a specified position

Preconditions:

Postconditions: Cursor will be in a new position

Normal Flow: 1. User calls move cursor command

2. System gets direction to move from input

3. System moves the cursor

23

5.6.2.1.11 Use Case #11

Use Case ID: CUT

Use Case Name: Cut Text

Priority: Low

Date Created: 3/01/2021

Actors: User

Description:
Deletes currently selected text from text window and adds it to the clipboard

Precondition: Text has been highlighted using a select command

Postconditions: Cursor will be at place where text was deleted, text is on the clipboard

Normal Flow: 1. User calls cut text command
2. System deletes text from text window
3. System leaves the cursor at place of deleted text
4. System adds deleted text to the clipboard

24

5.6.2.1.12 Use Case #12

Use Case ID: UC

Use Case Name: Undo Command

Priority: Low

Date Created: 9/13/2020

Actors: User

Description: System will execute the editor undo command

Preconditions: An action that can be undone has already happened

Postconditions: Text file state goes back by one

Normal Flow: 1. User calls undo command

2. System executes the undo command

3. System relays to user what was undone

25

5.6.2.1.13 Use Case #13

Use Case ID: RC

Use Case Name: Redo Command

Priority: Low

Date Created: 9/13/2020

Actors: User

Description: System will execute the editor redo command

Preconditions: Undo was previously done and an action can be redone

Postconditions: Text file state goes forward by one

Normal Flow: 1. User calls redo command

2. System executes the redo command

3. System relays to user what was redone

26

5.6.2.1.14 Use Case #14

Use Case ID: SW

Use Case Name: Select Word

Priority: Low

Date Created: 10/4/2020

Actors: User

Description: System will select the current word that the cursor is on

Postconditions: The word that the cursor is on is selected

Normal Flow: 1. User calls the select word command

2. System selects the current word that the cursor is on

27

5.6.2.1.15 Use Case #15

Use Case ID: SL

Use Case Name: Select Line

Priority: Low

Date Created: 10/4/2020

Actors: User

Description: System will select the current line that the cursor in on

Postconditions: The line that the cursor is on is selected

Normal Flow: 1. User calls the select line command

2. System selects the current line that the cursor is on

28

5.6.2.1.16 Use Case #16

Use Case ID: SB

Use Case Name: Select Block

Priority: Low

Date Created: 10/4/2020

Actors: User

Description: System will select the current line and every adjacent line without an empty line that

is on the same indentation level

Postconditions: A block of code is selected

Normal Flow: 1. User calls the select block command

2. System finds the current block that the cursor is on

29

5.6.2.1.17 Use Case #17

Use Case ID: CT

Use Case Name: Copy Text

Priority: Low

Date Created: 9/13/2020 Last Revision Date 10/4/2020

Actors: User

Description: Copies currently selected text into clipboard

Preconditions: Text has been highlighted using select command

Postconditions: Selected text has been added to clipboard

Normal Flow: 1. User issues copy text command

2. System puts selected text into clipboard

30

5.6.2.1.18 Use Case #18

Use Case ID: PT

Use Case Name: Paste Text

Priority: Low

Date Created: 9/13/2020 Last Revision Date 10/4/2020

Actors: User

Description: Content in the clipboard is pasted at the cursor’s position

Preconditions: There is text in the clipboard that can be pasted

Postconditions: Text is pasted from the clipboard to the cursor’s position

Normal Flow: 1. User issues paste text command

2. System pastes from clipboard at cursor’s position

31

5.6.2.1.19 Use Case #19

Use Case ID: PS

Use Case Name: Print Statement

Priority: High

Date Created: 1/29/2021 Last Revision Date 1/29/2021

Actors: User

Description: when command is called a print statement is created in the text editor

Postconditions: a Python print statement of the form: print(“spoken words”) is created in the

text editor window and the cursor is moved to the next line

Normal Flow: 1. User issues print statement command

2. user is prompted for desired statement to print

3. system asks for verification

4. user verifies with “yes”

5. system creates a Python print statement in the text window

Alternate Flow: 4a. user verifies with “no”

4b. system asks for statement again, goes to 3

32

5.6.2.1.20 Use Case #20

Use Case ID: PV

Use Case Name: Print Variable

Priority: High

Date Created: 1/29/2021 Last Revision Date 1/29/2021

Actors: User

Description: when command is called a print variable statement is created in the text editor

Postconditions: a Python print statement of the form: print(variable) is created in the text

editor window and the cursor is moved to the next line

Normal Flow: 1. user issues print variable command

2. user is prompted for desired variable to print

3. system asks for verification

4. user verifies with “yes”

5. system creates a Python print statement in the text window

Alternate Flow: 4a. user verifies with “no”

4b. system asks for variable again, goes to 3

33

5.6.2.1.21 Use Case #21

Use Case ID: CF

Use Case Name: Create Function

Priority: High

Date Created: 1/29/2021 Last Revision Date 1/29/2021

Actors: User

Description: when command is called a function statement is created in the text editor

Postconditions: a Python function statement of the form: def func(): is created in the text

editor window and the cursor is moved to the next line with indent

Normal Flow: 1. User issues create function command

2. user is prompted for desired name of function

3. system asks for verification

4. user verifies with “yes”

5. system asks for number of arguments, verification

6. system asks for names of arguments, verification

7. system creates function in text window

Alternate Flow: 4a. user verifies with “no”

4b. system asks for name again, goes to 3

5b. system asks for number again

6b. system asks for names again

34

5.6.2.1.22 Use Case #22

Use Case ID: IC

Use Case Name: Indent Cursor

Priority: Low

Date Created: 4/01/2021 Last Revision Date 04/01/2021

Actors: User

Description: when command is called the cursor is indented in the text editor

Postconditions: the cursor is indented 4 spaces in the text editor

Normal Flow: 1. User issues indent cursor command

2. System places a string of 4 spaces at current cursor location

35

5.6.2.1.23 Use Case #23

Use Case ID: ICHAR

Use Case Name: Insert Characters

Priority: Low

Date Created: 4/01/2021 Last Revision Date 04/01/2021

Actors: User

Description: when command is called the system will insert spoken string of characters at current

cursor location in the text editor

Postconditions: new string of character(s) has been added in the text editor

Normal Flow: 1. User issues insert characters command

2. user is prompted for desired character(s)

3. system asks for verification

4. user verifies with “yes”

5. system inserts characters at cursor location

Alternate Flow: 4a. user verifies with “no”

 4b. system asks for string again, goes to 3

5.6.2.2 Functional Requirements

36

5.6.2.2.1 The system must receive input from the user using a Natural Language Interface

5.6.2.2.2 The system must receive input from the user using a Menu Driven Interface

5.6.2.2.3 The system could receive input from the user using a Graphical User Interface

5.6.2.2.4 The system must allow the user to create statements

 5.6.2.2.4.1 statements that give a value to a variable

 5.6.2.2.4.2 statements that return a value

 5.6.2.2.4.3 if statements including if, else if, else

5.6.2.2.5 The system should allow the user to create a loop

 5.6.2.2.5.1 for loop

 5.6.2.2.5.2 while loop

5.6.2.2.6 The system should be able to navigate through the program

 5.6.2.2.6.1 with a cursor position

 5.6.2.2.6.2 with a word position

5.6.2.2.7 The system should handle creating arrays

5.6.2.2.8 The system could execute an undo command

5.6.2.2.9 The system could execute a redo command

5.6.2.2.10 The system could handle clipboard functions

 5.6.2.2.10.1 select text

 5.6.2.2.10.1.1 select a word

 5.6.2.2.10.1.2 select a line of text

 5.6.2.2.10.1.3 select a block of text

 5.6.2.2.10.2 copy text

 5.6.2.2.10.3 paste text

5.6.2.3 Non-Functional Requirements

5.6.2.3.1 Performance

 5.6.2.3.1.1 Startup time

 The system should be ready for editing in less than 10 seconds from startup.

 5.6.2.3.1.2 Response time

 The system should take less than 500ms to display the result from any voice

 commands.

5.6.2.3.2 Reliability

 The system should maintain accuracy of at least 80% when responding to user’s voice

 commands

5.6.2.3.3 Availability

 5.6.2.3.3.1 Voice Input Device Connection

 The system requires a channel of communication to a voice input device.

 5.6.2.3.3.2 System Availability

 The system should be available for the user without requiring an internet

 connection to work.

5.6.2.3.4 Security

 The system should not share or upload any recorded audio from the editing sessions.

5.6.2.3.5 Maintainability

 5.6.2.3.5.1 System Testability

 The system should be designed in a way that individual functions can be tested

 separately from the main system and each of those functions can be tested as they

 are implemented without affecting the whole system.

 5.6.2.3.5.2 System Modifiability

37

 The system should be designed in a way that when new features are added there

 is minimal duplication of code that would make modifying the code

 cumbersome. The code will not be lacking in documentation to fully understand

 how the code works and sufficient refactoring will be achieved to allow for

 seamless modifications.

5.7 Software Design (SDD) (version 4391.4.1)

 5.7.1 Technologies Used

Language: Python; Tools: CMU Sphinx, GitHub, Google Drive, Adobe Illustrator, Diagrams.net

5.7.2 UML Design Diagrams

 5.7.2.1 Class Diagram

UserInterface interacts with the TextEditor to open, save and start a new file for editing.

UserInterface and TextEditor interact with CommandManager when receiving output.

UserInterface reacts with VoiceTrainer for improving voice recognition system.

CommandManager receives input from VoiceRecognition. Terminal receives input from the

CommandManager.

 5.7.2.2 Sequence Diagram

38

 A-type commands involve an extra step of creating inputs such as the user creating an if

 statement. That would require specifying the conditions of the if statement, like: if (x > y): s =

 “x is less than y” B-type commands do not involve more steps beyond simply executing the

 command given with a location or a begin and end position (cursor position)

*additions of A-Type commands: Print Statement, Print Variable, Create Function 1/29/2021; Insert

Characters 3/01/21. additions of B-Type commands: Indent Cursor 3/01/21

*addition of File System and Voice Training System 2/01/21; diagram continued on next page

39

40

5.7.3 Software Architecture

 5.7.3.1 Architecture Diagram

The User Interface Layer is composed of the visual aspects that the user directly interacts with

 or reads system generated messages from. The next layer is the Communication Layer and

 Events Layer. These are the components that are generating output or receiving input from

 the User Interface Layer. The Functional Service Layer is the main part of the system that is

 executing the necessary actions based on the commands and inputs received in the

 Communication Layer. Lastly we have the data layer that contains user generated data and

 pre-programmed data that will be used to circle back to the User Interface for communicating

 to the User everything that the system has processed.

41

5.7.3.2 Component level design

 5.7.3.2.1 User Interface Layer

5.7.3.2.1.1 Voice Recorder - responsible for receiving user inputs of audio and mouse

clicks, will open file if started and close file upon stopping, relays to user what the Voice

Recognition Software recorded

5.7.3.2.1.2 System Output - relays to user status of system and incoming requests from

the command Manager

5.7.3.2.1.3 Manager Output - relays to user status of Command Manager and inputs that

it has received for current command it is processing

5.7.3.2.1.4 Text Editor - shows user what has been programmed so far and is responsible

for cursor movement, receives text from the Command Manager

5.7.3.2.1.5 Command Line - a place to compile/run file created by user

 5.7.3.2.2 Communication/Events Layer

5.7.3.2.2.1 Voice Recognition Software - sends received audio to the Voice Recorder and

the processed audio to the Command Manager for verification

5.7.3.2.2.2 Start Button - user clicks button to start recording

5.7.3.2.2.3 Command Manager - receives voice commands and inputs from the Voice

Recognition Software, relays the status/requests/commands to the User Interface, verifies

commands, requests/verifies inputs, executes completed commands to the Text Editor,

communicates with the Syntax Processor to relay errors to the user if applicable

5.7.3.2.2.2 End Button - user clicks button to compile and run code in text editor window

 5.7.3.2.3 Functional Service Layer

5.7.3.2.3.1 Open/New/Save File - receives notification of drop down menu activated to

open/close file for the text editor window in the User Interface

5.7.3.2.3.2 Verify Command - receives commands from Command Manager and

compares to known pre-programmed commands to determine validity, picks up status

statements for User Interface output

5.7.3.2.3.3 Request Inputs - Command Manager picks up status and request statements

for user interface

5.7.3.2.3.4 Verify Inputs - same as 4.2.3.2 but for requested inputs, does not need to make

comparisons as inputs will be unique but checked with Syntax Processor

5.7.3.2.3.5 Execute Command - the Command Manager will execute the verified

command with inputs and make changes to the Text Editor, picks up status statements for

User Interface output

5.7.3.2.3.6 Move Cursor - retrieves location values and moves cursor within the Text

Editor for applicable commands

5.7.3.2.3.7 Compile/Run File - process initiated by End Button

42

 5.7.3.2.4 Data Layer

 5.7.3.2.4.1 User Commands/Input - collected data of spoken commands and inputs

5.7.3.2.4.2 Status - programmed and generated statements for output

5.7.3.2.4.3 Programmed Commands - database of commands for verification

5.7.3.2.4.4 Text - assembled text from user Commands and Inputs used to create file in

the Text Editor

5.7.3.2.4.5 Location X,Y - database of cursor locations used for moving the cursor and

executing undo/redo, copy/paste, select commands

5.7.3.3 Architectural Alternatives

We briefly discussed the possibility of using a microkernel architecture but decided we would

not be using the plug-in feature that this architecture uses.

5.7.3.4 Design Rationale

After studying several architecture types we decided that a layered architecture describes our

project best. The layered architecture allows us to take advantage of it being “maintainable,

testable, easy to assign separate roles and easy to update and enhance layers separately” [13].

According to techbeacon.com it is also considered best for “teams with inexperienced developers

who don’t understand other architectures yet” and “applications requiring strict maintainability

and testability standards” [13]. We also feel that the event-driven architecture best describes the

voice recognition segment of our project, because we will have a command manager that receives

all voice input and delegates the correct response and action from the system depending on what

command was issued. As the project progresses we will be adding more functionality that

addresses more commands and being able to efficiently and easily scale the project to

accommodate these is a nice advantage of this architecture type [13].

43

5.7.4 Data Flow Diagram

44

45

46

 5.7.5 User Interface Design

 (proposed version)

(final version)

Individual boxes for each process including the voice recorder, text editor, command manager,

terminal and system output that interacts with the user to let them know what input or command the system

is needing next. The voice recorder has an indicator to let the user know if it has started recording input or

if the current recording session has ended. The command manager will be an indicator of what the system

is processing before making changes to the text editor. The text editor includes a line number to help the

user navigate by voice for the commands needing an x/y location. Beneath the text editor is a window to

display the output for compiling and running the users code. A box at the bottom includes all possible

commands as a quick guide reference to make it easier for the user to issue commands.

47

 5.7.6 Data Model

 5.7.7 Design constraints

48

The only constraint we are facing with our system is that “no commercial tools or services, e.g.,

Google’s speech recognition service, must be required for the system to work.” [10] This requires

us to utilize open source voice recognition, such as CMU Sphinx. We will need to incorporate

machine learning to increase the accuracy of the recognition in order to be comparable to a

commercial tool. The choice of using pre-programmed commands for comparison to the spoken

commands is also influenced by the accuracy of a non-commercial voice recognition tool.

5.8 Implementation

5.8.1 Presentation

https://docs.google.com/presentation/d/1gqG-

PXa3qJPbnYf9UYf0whSLxYRlOvIylOaSF8PMnkk/edit#slide=id.gd3864351ec_0_1223

5.8.2 Core Tech Stacks

 5.8.2.1 Python - Tkinter

 5.8.2.2 CMU-Sphinx

 5.8.2.3 Google Speech API

 5.8.2.4 Sphinx-doc

5.8.3 Project Repository

 https://github.com/anbinhpham1107/VOCODER

5.8.4 Programming Languages/Libraries

Language: Python

Libraries:

● tkinter

● speech_recognition

● PIL

● threading

● queue

● os

● sys

● glob

● shutil

● sounddevice

● scipy.io.wavfile.write

● pydub.AudioSegment

● pydub.playback.play

● screeninfo.get_monitors

● re

● fuzzywuzzy

● vosk.SetLogLevel

● compiler

https://docs.google.com/presentation/d/1gqG-PXa3qJPbnYf9UYf0whSLxYRlOvIylOaSF8PMnkk/edit#slide=id.gd3864351ec_0_1223
https://docs.google.com/presentation/d/1gqG-PXa3qJPbnYf9UYf0whSLxYRlOvIylOaSF8PMnkk/edit#slide=id.gd3864351ec_0_1223
https://github.com/anbinhpham1107/VOCODER

49

5.8.5 Code Snippets

50

51

5.8.6 Pseudocode/Algorithm

 getVoiceInput():

 r = speech recognizer

 while there is audio to use as input

 audio = formatted input audio

 audioToText = speech to text from audio using r

 return audioToText

 phraseMatch(audioInputText):

 closestString = command string best matched to audioToText

 if closest string == “command 1”

 stringP = command1()

 elif closest string == “command 2”

 stringP = command2()

 …

 return stringP

52

createNewVariable(...):

 while not the correct name:

 prompt the user for name of variable

 confirm with user if inputted name is correct

 if not, continue()

 check if name is already in use

 if yes, inform user and confirm if user still wants to use the name

 if not, continue()

 while not the correct expression:

 prompt the user for expression of variable assignment

 replace symbols with their symbolic version

 confirm with user if inputted expression is correct

 if not, continue()

 string = variable name + “ = “ + expression

 return string

53

5.8.7 Code Metrics

 Using Lizard code complexity analyzer [16], we are able to assess where we stand in

meeting our goals mentioned in 5.6.2.3.5 Maintainability. We currently have all of the use cases

implemented out of the original 18 proposed in addition to 5 others added over time. We have a few high

numbers in the complexity column for the file voice_recognition.py that will need to be addressed in

order to achieve our goal of refactoring and making clean code that is modifiable.

54

55

5.8.8 Voice Training

Currently, the main source we use for accurate results is the Google Speech-to-Text voice

recognition system, but since we had the constraint of not being able to use any commercial

service for the system to work, we also included CMU Sphinx. Sphinx came with a basic

language model that it would use when recognizing speech but that only gave us an average

accuracy of about 56.7%. The ones behind CMU Sphinx had a way of creating a more

personalized language model, so we incorporated it into the system to allow the user to adapt

their own language model for use when using Sphinx as the voice recognizer.

By using the personalized language models, we were able to increase our average voice

recognition accuracy up to 84.2%. For now, we have the option for the user to choose between

using Google or one of the Sphinx language models to use for voice recognition so that the

system can also work when offline.

5.8.9 Testing

 5.8.9.1 Technologies/Programming Languages/Libraries

● Pocketsphinx and Google Voice Recognition (for precision, but not required)

● IDE with Python support

● Python 3.8

● Hardware (Laptop or Desktop PC and Microphone)

 5.8.9.2 Testing Report

 5.8.9.2.1 Introduction

This section serves as the plan for testing all software artifacts as well as the reporting of

 test results. This section provides the test plan and test procedures for carrying out

 various levels of testing on the Vocoder product and to ensure the product runs without

 errors and to meet the customer requirements at an accredited level.

5.8.9.2.2 Items Tested

○ application.py

○ voice_recognition.py

○ compiler.py

 5.8.9.2.3 Intended Audience

○ developers

○ testers

○ customers

 5.8.9.2.3 Scope

 In this testing document, all the core functionalities of the system will be tested.

 5.8.9.2.4 Definitions and Acronyms

○ test commands: {1.create array, 2.create else statement, 3.create else-if statement,

4.create if statement, 5.create while loop, 6.create for loop, 7.return statement,

8.assign old variable, 9.create new variable,10.copy text, 11.select block, 12.select

line, 13.select word, 14.cut text, 15.move cursor, 16.paste text, 17.redo command,

18.undo command, 19.print statement, 20.print variable, 21.create function, 22.

indent cursor, 23. insert characters}

56

○ tex, tex2, tex3, tex4: references to information being displayed in the GUI

windows; tex = text editor window, tex2 = command(s) received, tex3 = command

manager, tex4 = system output

○ GUI outputs - command manager window will display the processes that the system

completed, system output window will display the status of the system processes,

command(s) received window will be updated to show the user what commands

have been called, text editor window will display users intended code

 5.8.9.2.5 Features to be Tested

 All the requirements outlined in the requirement definition document will be tested as

 new features.

 5.8.9.2.5 Approach

 Unit test. Developers are responsible for unit testing. The implementation of each

 module and individual components will be verified separately. List all the units

 implemented as separate units and discuss how are you planning to test them?

 The user interface includes: start button, end button, recording indicator light, commands

 received text box, system output text box, command manager output box, text editor box,

 command line box, drop down menus. First level functions include: getVoiceInput(),

 phraseMatch(), test_compiler(), getClosestString(), text2int(), showSet(), confirm(),

 listen(), chooseLanguageModel(), recordVoiceLines(), and trainLanguageModel().

 Second level functions include: createNewVariable(), assignOldVariable(),

 returnStatement(), createForLoop(), getCondition(), createWhileLoop(),

 createIfStatement(), createElseIfStatement(), createElseStatement(), createArray(),

 moveCursor(), selectWord(), selectLine(), selectBlock(), copyText(), pasteText(),

 cutText(), printStatement(), printVariable(), createDef(), getSymbols(), insertChars(),

 changeLanguageModel(), recordingVoice(), getPrevLine(), getNextLine(),

 playWavFile(), recWavFile(), checkNameButton(), and trainModelButton(). We will be

 using the equivalence partition technique to test each function for Pass/Fail. The second

 level functions rely on the first level functions and thus the first level functions are

 regarded as priority 1 for testing before moving on to the second level functions. The user

 interface units will be monitored visually for errors and used for indications of error in

 the first and second level functions in addition to the terminal outputs from running the

 program.

Integration test. After the unit test is passed above the defined quality threshold, testers

 will execute the integration test cases. After all the modules are integrated, it’s crucial to

 test the product as a black-box. List the end-to-end scenarios that will be tested to ensure

 the communication functionality.

 We referred back to our Sequence Diagram and followed each possible path as a potential

 process to test. For example: [Start recorder, speak command “return statement”, verify

 command, speak command inputs, verify inputs, end recording] would be a complete set

 of actions to test for Pass/Fail. Upon completion of the Unit tests listed in the Acceptance

 Test Procedure below, we have concluded that the integration test has passed all intended

 scenarios for the system.

57

Positive and negative testing design technique. This approach will be combined with

 the unit test and the integration test. Test cases are designed in sunny day scenarios,

 which ensure that all functional requirements are satisfied. What’s more, rainy day test

 cases will also be covered to show how the system reacts with invalid operations. List the

 positive and negative test cases that you will use with your system.

 Positive cases included the planned flow of user interactions listed in our requirements

 document. Negative cases for our particular project included a user not speaking after

 clicking the start button, a user speaking commands and inputs not included in the list of

 valid commands, or a user clicking outside of the user interface.

System test. System testing has a particular purpose: to compare the system or program

 to its original objectives. Describe how you will perform this test with your system.

 We referred back to our design documentation as a checklist against the system to verify

 if the system was built correctly and if the correct system was built for the proposed need

 of the user. After reviewing the Project Proposal and Software Requirements

 Specifications, we feel we have accomplished both of these, therefore passing the System

 test.

Acceptance test. Acceptance testing is the process of comparing the program to its initial

 requirements and the current needs of its end users.

5.8.9.2.5 Acceptance Test Procedure

(The following is a portion of the Acceptance Test Procedure, please see the Appendix C

 for the full testing results)

TEST ID

[Use case

derived

from]

Pri

o

rit

y

Feature Description

Test Case

Description
Input

Expected

Output

Actual

Output

GVI 1

getVoiceInput() - convert

spoken command into a string,

save in variable audioToText
and return that string

speak a command

after clicking start

button

(see commands 1-

18 in part V

above) such as

“create variable”

string of spoken

command saved in

variable -

audioToText

pass

PM 1

phraseMatch() - calls the

getClosestString function to

find the best matching function

to the input

speak a command

after clicking start

button

Test Commands 1-

18 from part V

such as “create

variable”

related function is

called based on

translated

command

pass

GCS

1

getClosestString() - takes

in string and a list as input

and finds the item in the

string that best matches the

input string and returns it

speak a command

after clicking start

button

Any input string,

list to find closest

match from

invalid command

would be “test

something”

If input list has a

match, returns the

element that best

matches the input

string.

All other

commands, Print

out that “no

matching phrase

was found”

pass

pass

58

 5.8.9.2.6 Testing Summary

 Using the equivalence partition technique we have been able to complete the testing of

 our code and throughout the testing process we made the necessary adjustments to the

 implemented functions and added more that we discovered would benefit the user. We

 continued to make updates to this testing document as more functions were implemented

 or as more changes occured in the code. It was our goal to make this system user friendly

 by regularly inspecting the system for errors and using all previously written

 documentation in the creation phase to make sure we stayed in line with the

 specifications. After analyzing the system using the various methods discussed in this

 section, we feel more confident in saying that we achieved that goal.

6. Results

59

60

An example of the GUI after the user has issued several commands. The command(s) received window

has been updated after each successful command being called. The system output window and command

manager window have been updated after the system executes the commands. The text editor window

shows the current state of the Python file being edited by the user and the terminal shows the output after

the user clicks the “End” button to see the results of compiling and running the code they are working on.

7. Summary and Future Work

7.1 Summary

 With many people deciding to choose working with software as their careers, there’s a

reasonable chance for them to develop repetitive strain injuries and will need assistance to

perform their jobs. There are limited options available to help those in need and even then, the

transition to those options can be a slow and painful process. Our goal was to create a user-

friendly system that improves on what is currently available. We have achieved several

milestones with our project including meeting all of the initial requirements, staying close to the

original design specifications, improving the accuracy of the stand alone voice recognition

software and completing exhaustive testing. We have also created extra commands and

functionality along the way as we became more familiar with the process of coding in Python

and thinking about what a typical user would benefit most from. We hope that with this project,

Vocoder can be a preferred option to use for those needing help.

61

7.2 Future Work

● Create a working executable to run the program

● Continue improvements of accuracy of voice recognition output

● Address the possibility of coding in other languages beyond Python

● Expansion of the command capabilities

● Long term maintenance including a User Manual, HTML documentation and bug reports posted

through Github

8. References

[1] https://docs.google.com/document/d/1YUF9WVc5fsXha1LMcNvFgt8X6Wb1dKXg23Je33HJ2hs/edit

[2] https://blog.logrocket.com/programming-by-voice-in-2019-3e1855f5add9/

[3] https://www.smashingmagazine.com/2019/05/future-design-voice-prototypes/

[4] http://redstartsystems.com/human-machine-grammar-the-rules

[5] Maloku, Rinor S, & Pllana, Besart Xh. (2016). HyperCode: Voice aided programming. IFAC

PapersOnLine, 49(29), 263-268.

[6] Desilets, A. (2001). VoiceGrip: A Tool for Programming-by-Voice. International Journal of Speech

Technology, 4(2), 103-116.

[7] Lunuwilage, Kaveendra, Abeysekara, Sameera, Witharama, Lahiru, Mendis, Shamini, & Thelijjagoda,

Samantha. (2017). Web based programming tool with speech recognition for visually impaired users. 1-6.

[8] Babich, N. (2019, May 02). Designing For The Future With Voice Prototypes. Retrieved September

19, 2020, from https://www.smashingmagazine.com/2019/05/future-design-voice-prototypes/

[9] Arnold, S. C., Mark, L., & Goldthwaite, J. (2000, January). Programming by Voice,

VocalProgramming. Retrieved September 20, 2020, from

https://www.researchgate.net/publication/221652444_Programming_by_voice_VocalProgramming

[10] VBP: Support for Voice-Based Programming, SCORE 2021, https://conf.researchr.org/home/icse-

2021/score-2021#vbp-support-for-voice-based-programming

[11] IEEE Recommended Practice for Software Requirements Specifications,Copyright © 1998 by the

Institute of Electrical and Electronics Engineers, Inc., https://ieeexplore.ieee.org/Xplore/home.jsp

[12] Foraker Labs (2015). Www.usabilityfirst.com. Retrieved October 06, 2020, from

https://www.usabilityfirst.com/glossary/natural-language-interface/index.html

[13] Wayner, P. (2020, July 14). How to choose the right software architecture: The top 5 patterns.

Retrieved October 18, 2020, from https://techbeacon.com/app-dev-testing/top-5-software-architecture-

patterns-how-make-right-choice

[14] Computer Programmers : Occupational Outlook Handbook. (2020, September 01). Retrieved

October 23, 2020, from https://www.bls.gov/ooh/computer-and-information-technology/computer-

programmers.htm

[15] Tendinitis. (2017, December 14). Retrieved October 23, 2020, from

https://www.mayoclinic.org/diseases-conditions/tendinitis/symptoms-causes/syc-20378243

[16] http://www.lizard.ws/#

http://www.lizard.ws/

62

9. Contribution Table and Teamwork

Team Member Percentage

Binh An Pham 33%

Steven Tran 33%

M Rachel Van Pelt 34%

Appendix A: Glossary

CTS: Carpal tunnel syndrome

programmer: Computer programmers write and test code that allows computer applications and software

programs to function properly. [14]

SDD: Software Design Document

SRS: Software Requirements Specifications

tendonitis: inflammation or irritation of a tendon — the thick fibrous cords that attach muscle to bone.

The condition causes pain and tenderness just outside a joint. While tendinitis can occur in any of your

tendons, it's most common around your shoulders, elbows, wrists, knees and heels. [15]

user: The person, or people, who operate or interact directly with the product [11]

Natural Language Interface: (NLI) a user interface that allows people to interact using a human

language, such as English, as opposed to a computer language, command line interface, or GUI [12]

Menu Driven Interface: (MDI) an interface consisting of a series of screens which are navigated by

choosing options from lists, i.e. menus. (“Menu” is not used here to refer to pull down menus, but to lists

of options on the screen that lead to other screens.) [12]

Graphical User Interface: (GUI) pronounced “GOOEY”. A user interface that presents information

graphically, typically with draggable windows, buttons, and icons, as opposed to a textual user interface,

where information is presented on a text-based screen and commands are all typed [12]

63

Appendix B: keyboard symbols reference for use in Python code

_ : underscore

: hashtag

* : asterisk

() : open parenthesis and closed parenthesis

- : hyphen

= = : equal to

! = : not equal to

[] : open bracket and closed bracket

{ } : curly brace and closed curly brace

\ / : forward and backslash

| : pipe or vertical bar

< > : open angle bracket

: ; : colon and semi-colon

, . ? : comma, period, question mark

“ “ : quotation mark

‘ : single quote

Appendix C: 5.8.9.2.5 Acceptance Test Procedure

TEST ID

[Use case

derived

from]

Pri

o

rit

y

Feature Description

Test Case

Description
Input

Expected

Output

Actual

Output

GVI 1

getVoiceInput() - convert

spoken command into a

string, save in variable
audioToText
and return that string

speak a command

after clicking start

button

(see commands

1-18 in part V

above) such as

“create variable”

string of spoken

command saved

in variable -
audioToText

pass

PM 1

phraseMatch() - calls the

getClosestString function to

find the best matching

function to the input

speak a command

after clicking start

button

Test Commands

1-18 from part V

such as “create

variable”

related function is

called based on

translated

command

pass

GCS

1

getClosestString() - takes

in string and a list as input

and finds the item in the

string that best matches the

input string and returns it

speak a command

after clicking start

button

Any input string,

list to find closest

match from

invalid command

would be “test

something”

If input list has a

match, returns the

element that best

matches the input

string

All other

commands, Print

out that “no

matching phrase

was found”

pass

pass

64

T2I

1

text2int() - takes in a string as

input and returns a string

containing the numerical

form of the input string

speak a command

and give input

using numbers

spoken word

such as “zero” or

“one hundred

twenty four”

If input string

contains only the

word form of a

valid number:

Returns the

numerical form of

that number

If input string

contains a non-

valid word:

Returns an error

pass

SS

1

showSet() - displays a list of

variables that are currently

stored in

setOfVariableNames

Call the showSet

function when

prompted for a

command

No input needed Returns a list of

the variables

currently saved in

setOfVariableNa

mes to the system

output window

pass

C 1

confirm() - calls

getVoiceInput and prompts

the user to reply “yes” or

“no” to confirm the data

collected

Call any command

that takes in data

“yes/no” If closest match is

“yes”: Proceed

with function

If closest match is

“no”: Retake data

and confirm with

user again

pass

L 1

listen() Microphone

input

If a valid voice

input is

recognized, pass

with no errors,

else throw invalid

voice input

pass

GS 1

getSymbols() issue “insert

characters”

command and test

strings that include

symbols ()[]{},.\<

spoken string converts spoken

keyboard symbols

from word string

to the symbol

desired

pass

GC 1

getCondition() issue “while

loop”,”if/elseif”

command and test

strings that include

x<y, x==6, etc

spoken string converts spoken

conditions for a

loop from word

string to the

symbols desired

pass

CNV 2

createNewVariable() say “create new

variable” after

clicking the start

button. say name

of variable,

confirm yes/no to

prompted

questions, give

a = 1

my_var = 1

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

65

initial value to

variable

AOV 2

assignOldVariable() say “assign old

variable” after

clicking the start

button. say name of

variable, confirm

yes/no to

confirmation, give

new value to

variable, verify

a = 2

a = b + 2

c = 3

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed, if no

match, create new

variable, warn

user if using

unassigned

variables in

equation

pass

RS 2

returnStatement() say “return

statement” after

clicking the start

button. say none or

expression, verify

a

none

3

a+3

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

CFL 2

createForLoop() Say “create for

loop” after clicking

the start button,

give the number of

loops, looping

variable name, and

then verify

for x in range(5): popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

CIS 2

createIfStatement() Say “create if

statement” after

clicking the start

button, give the

expression to be

tested, verify

a<b

a<=b

a!=

a==b

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

CMDW 3
commands received window

on the GUI

coincides with

issuing commands

Any voice input a history of user

issued commands

pass

TEXW 3

text editor window on the

GUI

“ ” Any text input

from keyboard or

voice input from

user

results of

completed

commands and

edits made by the

user

pass

SYSW 3

system output window on the

GUI

“ ” activated by

issuing

commands

history of system

status’

pass

MGRW 3

command manager window

on the GUI

“ ” activated when

user issues a

command

history of system

processes

pass

66

TERW 3

terminal window on the GUI Text in the text

editor window

Return the

standard Python

output for the

code created in

the text editor

window

pass

RI 4

recording indicator click start/end left mouse button turn red when

start button is

clicked, turn gray

when end button

is clicked

pass

PS 2

print statement call “print

statement”, give

statement, verify

spoken word(s)

of desired

statement

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

PV 2

print variable call “print

variable”, give

variable, verify

spoken word(s)

of desired

variable

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

CF 2

create function call “create

function” after

clicking the start

button, give the

name of function,

verify

spoken word(s)

of desired

function name

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

CWL 2

create while loop call “create while

loop”after clicking

the start button,

give the expression

to be tested, verify

a<b

a<=b

a!=

a==b

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

CEIF 2

create Else-If statement Say “create else if

statement” after

clicking the start

button, give the

expression to be

tested, verify

a<b

a<=b

a!=

a==b

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

STB 1

start button click start button left mouse button indicator turns

red, system listens

for user input

pass

67

ENB 1

end button click end button left mouse button indicator turns

gray, if not

already, terminal

shows output of

users executed

code

pass

CES 2

create Else statement Say “create else

statement done”

after clicking the

start button

n/a GUI output

updated

pass

CA 2

create Array call “create

array”after clicking

the start button,

give name and

values of new

array, verify

cars = ["Ford",

"Volvo",

"BMW"]

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

MC 2

move cursor call “move

cursor”after

clicking the start

button, give values

of new location,

verify

1,0

4,4

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

SW 2

select word call “select

word”after clicking

the start button,

give values of

selection begin and

end, verify

2,2 and 2,5 popup window

guides user for

inputs needed,

GUI updated after

popup window is

closed

pass

SL 2

select line call “select

line”after clicking

the start button,

give line number,

verify

2 popup window

guides user for

inputs needed,

GUI updated after

popup window is

closed

pass

SB 2

select block call “select

block”after

clicking the start

button, give line

number of begin

and end, verify

3 and 4 popup window

guides user for

inputs needed,

GUI updated after

popup window is

closed

pass

CT 2

copy text call “copy

text”after clicking

the start button and

having a selection

made

n/a selected text is

added to the

clipboard

pass

PT 2

paste text call “paste text”

after clicking the

start button and

n/a clipboard data is

pasted at cursor

location

pass

68

having a selection

copied

CUT 2

cut text call “cut text” after

clicking the start

button and having a

selection made

n/a selected text is

removed from the

text editor

window and

added to the

clipboard

pass

UC 2

undo command call “undo” after

clicking the start

button

n/a last user action in

the text edit

window is

reversed

pass

RC 2

redo command call “redo” after

clicking the start

button

n/a if “undo” was the

last user action,

the user action is

restored

pass

IC 2

indent cursor call “indent” after

clicking the start

button

n/a 4 spaces are

added and the

cursor is moved

forward in the text

edit window

pass

ICHAR 2

insert character(s) call “insert

characters” after

clicking the start

button

spoken

character(s)

including +, =,

{}, [], < >, etc

spoken

character(s) of

desired string are

added at cursor

location

pass

CLM 3

chooseLanguageModel()

allows the user to select from

a list of given choices to use

for the language model

click the “voice”

menu button then

click on “choose

language model”

n/a displays a menu

with available

language models

for the user to

choose from

pass

CHLM 3

changeLanguageModel() -

changes the language model

to the choice that the user

selected

while in the menu

for

chooseLanguageM

odel(), click on one

of the options

available

n/a copies the files

from the chosen

language model

directory over to

the directory

being used for

audio parsing

pass

RVL 3

recordVoiceLines() - gives

the user a choice to choose

which training model to use

to record voice lines

click the “voice”

menu button then

click on “record

voice lines”

n/a displays a list of

available training

models for the

user to choose

from

pass

RV 3

recordingVoice() - takes the

user’s choice and displays

the relevant text for the user

to say and has buttons for

getting the previous and next

while in the menu

for

recordVoiceLines()

, click on one of

the options

available

n/a displays a

window that pulls

text from the

needed file in the

training model

directory for the

pass

69

line, a record button, and

play button

user, and allows

the user to click

on the previous,

record, play, and

next buttons

GPL 3

getPrevLine() - gets the data

for the previous line from the

transcription file and displays

it on the window

while in the menu

for

recordingVoice(),

click on the

“previous” button

n/a retrieves the text

for the previous

line and displays

it in the relevant

window, if the

displayed line is

already the first

one in the list, a

message pops up

saying so

pass

GNL 3

getNextLine() - gets the data

for the next line from the

transcription file and displays

it on the window

while in the menu

for

recordingVoice(),

click on the “next”

button

n/a retrieves the text

for the nextline

and displays it in

the relevant

window, if the

displayed line is

already the last

one in the list, a

message pops up

saying so

pass

PWF 3

playWavFile() - retrieves the

relevant wav file that is being

displayed and plays it to the

audio output

while in the menu

for

recordingVoice(),

click on the “play”

button

n/a plays the audio

from the wav file

displayed in the

window, if there

is no wav file

available, a

message pops up

saying so

pass

RWF 3

recWavFile() - records the

user’s audio input for a

predefined amount of time

and saves it at the relevant

path

while in the menu

for

recordingVoice(),

click on the

“record” button

n/a records the user’s

audio input and

saves it to the

correct location, if

there is a file with

the same name

already there, it

will overwrite it

pass

TLM 3

trainLanguageModel() -

allows the user to create a

new language model with a

custom name and a choice

from which training model

to adapt it from

click on the

“voice” menu

button then click

on “train language

model”

n/a displays a

window that

contains a text

field for a

language model

name and a list of

available training

models

pass

70

CNB 3

checkNameButton() - checks

to see if a directory already

exists within the

AcousticModels directory

while in the menu

for

trainLanguageMod

el(), click on the

“check

availability” button

any string input displays a

message box

informing the user

if it is a pre

existing directory

pass

TMB 3

trainModelButton() - takes in

the user’s choice for name

and training model to create a

new language model

while in the menu

for

trainLanguageMod

el(), click on the

“train the language

model!” button

any string input,

training model

choice

trains a language

model using the

chosen training

model

pass

DDM 4

drop down menus click on File, Edit

Voice or Help to

see drop down

options and click

on the desired one

left mouse button activates the

process that was

clicked

pass

71

Appendix D: Project Management Excel Spreadsheet

